The syntax-morphology trade-off

Kilu von Prince
kilu.von.prince@hu-berlin.de

Language Science Kolloquium,
30.11.2017
Information density and typology

- Information density has been used as a proxy for linguistic complexity (Juola, 1998, 2008; Pellegrino et al., 2011; Ehret & Szmrecsanyi, 2016; Koplenig et al., 2017).
Information density and typology

- Information density has been used as a proxy for linguistic complexity (Juola, 1998, 2008; Pellegrino et al., 2011; Ehret & Szmrecsanyi, 2016; Koplenig et al., 2017).

- Questions concerning cross-linguistic differences in complexity at different levels are at the core of typological research and crucial for the relevance of typology beyond linguistics (Atkinson, 2011; Everett, 2005).
Information density and typology

- Information density has been used as a proxy for linguistic complexity (Juola, 1998, 2008; Pellegrino et al., 2011; Ehret & Szmrecsanyi, 2016; Koplenig et al., 2017).

- Questions concerning cross-linguistic differences in complexity at different levels are at the core of typological research and crucial for the relevance of typology beyond linguistics (Atkinson, 2011; Everett, 2005).

- Information density has also played a role in assessing properties of different word orders (Futrell et al., 2015; Gildea & Jaeger, 2016).
Information density and typology

- Information density has been used as a proxy for linguistic complexity (Juola, 1998, 2008; Pellegrino et al., 2011; Ehret & Szmrecsanyi, 2016; Koplenig et al., 2017).

- Questions concerning cross-linguistic differences in complexity at different levels are at the core of typological research and crucial for the relevance of typology beyond linguistics (Atkinson, 2011; Everett, 2005).

- Information density has also played a role in assessing properties of different word orders (Futrell et al., 2015; Gildea & Jaeger, 2016).

- There is still a certain gap between typological methodology and corpus-based investigations.
Futrell *et al.* (2015) make a claim about universal word order properties, based on a sample of 37 languages, from 6 different families, all from Eurasia, with only 4 out of 7 possible word orders → not typologically representative (Rijkhoff & Bakker, 1998). Map data from Dryer (2013).
Basic observations

- Some languages express argument structure, information structure, sentence type and other categories primarily by morphological marking.
Basic observations

- Some languages express argument structure, information structure, sentence type and other categories primarily by morphological marking.
- Other languages use word structure for the same functions.
Basic observations

- Some languages express argument structure, information structure, sentence type and other categories primarily by morphological marking.
- Other languages use word structure for the same functions.
- Example: case marking vs. word order for expressing argument structure:
Basic observations

- Some languages express argument structure, information structure, sentence type and other categories primarily by morphological marking.
- Other languages use word structure for the same functions.
- Example: case marking vs. word order for expressing argument structure:

 (1)
 a. den Hund hat die Katze gebissen
 b. die Katze hat den Hund gebissen

(2)
the cat bit the dog
Basic observations

- Some languages express argument structure, information structure, sentence type and other categories primarily by morphological marking.
- Other languages use word structure for the same functions.
- Example: case marking vs. word order for expressing argument structure:

(1) a. *den* Hund hat die Katze gebissen
Basic observations

- Some languages express argument structure, information structure, sentence type and other categories primarily by morphological marking.
- Other languages use word structure for the same functions.
- Example: case marking vs. word order for expressing argument structure:

(1) a. den Hund hat die Katze gebissen
 b. die Katze hat den Hund gebissen
Basic observations

- Some languages express argument structure, information structure, sentence type and other categories primarily by morphological marking.
- Other languages use word structure for the same functions.
- Example: case marking vs. word order for expressing argument structure:

 (1) a. *den* Hund hat die Katze gebissen
 b. die Katze hat *den* Hund gebissen

 (2) the cat bit the dog
A brief history

- Nichols (1992) is the first to systematically quantify morphological complexity, in a sample of 200 languages, based on grammatical descriptions.
A brief history

- Nichols (1992) is the first to systematically quantify morphological complexity, in a sample of 200 languages, based on grammatical descriptions.
- Siewierska (1998) first statistically established the general trend for a syntax-morphology trade-off in argument marking, based on grammatical descriptions.
A brief history

- Nichols (1992) is the first to systematically quantify morphological complexity, in a sample of 200 languages, based on grammatical descriptions.
- Siewierska (1998) first statistically established the general trend for a syntax-morphology trade-off in argument marking, based on grammatical descriptions.
- The first comparative text-based assessment of morphological complexity is Juola (1998, 2008);
A brief history

- Nichols (1992) is the first to systematically quantify morphological complexity, in a sample of 200 languages, based on grammatical descriptions.
- Siewierska (1998) first statistically established the general trend for a syntax-morphology trade-off in argument marking, based on grammatical descriptions.
- The first comparative text-based assessment of morphological complexity is Juola (1998, 2008);
- Ehret & Szmrecsanyi (2016) took the methodology by Juola (1998), applied it to syntax as well and morphology in ten varieties of English and six other European languages.
A brief history

- Nichols (1992) is the first to systematically quantify morphological complexity, in a sample of 200 languages, based on grammatical descriptions.
- Siewierska (1998) first statistically established the general trend for a syntax-morphology trade-off in argument marking, based on grammatical descriptions.
- The first comparative text-based assessment of morphological complexity is Juola (1998, 2008);
- Ehret & Szmrecsanyi (2016) took the methodology by Juola (1998), applied it to syntax as well and morphology in ten varieties of English and six other European languages.
- Koplenig et al. (2017) used related methods to establish a broad cross-linguistic trend in close to 1200 languages from the Parallel Bible Corpus (Mayer & Cysouw, 2014).
Targeting structural levels: Koplenig *et al.* (2017)

<table>
<thead>
<tr>
<th>Original</th>
<th>i called her yesterday and i called her today because i wanted to talk to her</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masked word structure</td>
<td>i itweiy khk doeerdsun rki i itweiy khk ehtuy ahuwlok i hwiklr dw weyy dw khk</td>
</tr>
<tr>
<td>Destroyed word order</td>
<td>her wanted i today talk i i her yesterday called because called her to to and</td>
</tr>
</tbody>
</table>
A closer look at methods: Measuring complexity

A closer look at methods: Measuring complexity

- Koplenig et al. (2017) take a different measure:
A closer look at methods: Measuring complexity

- Koplenig et al. (2017) take a different measure:

Approximation to the entropy of a specific string

\[H = \left(\frac{1}{N} \sum_{i=2}^{N} \frac{l_i}{\log(i)} \right)^{-1} \], where \(l_i \) is 1 plus the length of the maximal string that can be predicted from the character at position \(i \) in that it has previously followed it.
A closer look at methods: Measuring complexity

- Koplenig et al. (2017) take a different measure:

Approximation to the entropy of a specific string

\[
H = \left(\frac{1}{N} \sum_{i=2}^{N} \frac{l_i}{\log(i)} \right)^{-1}, \text{ where } l_i \text{ is 1 plus the length of the maximal string that can be predicted from the character at position } i \text{ in that it has previously followed it.}
\]
A closer look at methods: Measuring complexity

- Koplenig et al. (2017) take a different measure:

Approximation to the entropy of a specific string

\[H = \left[\frac{1}{N} \sum_{i=2}^{N} \frac{l_i}{\log(i)} \right]^{-1} \]

where \(l_i \) is 1 plus the length of the maximal string that can be predicted from the character at position \(i \) in that it has previously followed it.

Example:

(3) a. they perceived that he spake of them
 b. they supposed that they should have \(\rightarrow l_i = 9 \)
Results

![Graphs showing the relationship between word structure information and syntax-morphology trade-off for Luke, Mark, Matthew, and Revelation.](image)

- Luke: $r = -0.74$, $N = 1,162$
 - $E(D_l|D_s) = -0.19 + 0.22 \cdot D_s; R^2 = 0.55$
- Mark: $r = -0.74$, $N = 1,172$
 - $E(D_l|D_s) = -0.21 + 0.23 \cdot D_s; R^2 = 0.56$
- Matthew: $r = -0.71$, $N = 1,156$
- Revelation: $r = -0.74$, $N = 1,144$
Effects of writing systems?

- By replacing a few thousand Chinese characters (types) with two dozen Latin letters, you may produce new regularities.
Effects of writing systems?

- By replacing a few thousand Chinese characters (types) with two dozen Latin letters, you may produce new regularities.
- We would expect that the writing system may have a significant effect on the relevant values of a language.
Effects of writing systems?

- By replacing a few thousand Chinese characters (types) with two dozen Latin letters, you may produce new regularities.
- We would expect that the writing system may have a significant effect on the relevant values of a language.
Effects of writing systems?

- By replacing a few thousand Chinese characters (types) with two dozen Latin letters, you may produce new regularities.
- We would expect that the writing system may have a significant effect on the relevant values of a language.

(4) Hakka Chinese
Yâ-sû Kî-tuk he Thai-ví ke heu-thoi , Thai-ví he Â-pak-lâ-hón ke heu-thoi

(5) Mandarin Chinese
耶穌 基督 —— 大衛 的 後裔 、 亞伯拉罕 的 後代 —— 他的 家譜
Illustration of possible writing system effects
Non-linear morphology

- Not all morphological processes are strictly linear;
- Non-linear morphological processes are also known as **fusional**;
- They may involve
 - complex stem alternations (inflection);
 - consonantal, skeletal roots;
 - suprasegmental processes (tone);
 - vowel harmony;
Illustration of non-linear morphological processes

Consonantal roots: Hebrew (Semitic)

\[\text{g} \quad \text{d} \quad \text{r} \quad \text{“lock in”}\]

\[\text{g} \quad \text{a} \quad \text{d} \quad \text{a} \quad \text{r} \quad \text{“he locked in”}\]

\[\text{g} \quad \text{u} \quad \text{d} \quad \text{a} \quad \text{r} \quad \text{“he was locked in”}\]

Tonal morphology: Kisi (Atlantic)

(6) a. \(\text{Ò } \text{cìmbù}\.\)

\[3\text{SG leave.PRES.HABITUAL}\]

“She (usually) leaves.”

b. \(\text{Ò } \text{cìmbú}\.\)

\[3\text{SG leave.PST.PFV}\]

She left.
Non-linear morphology in Koplenig et al. (2017)

- The method of measuring l_i to determine approximate entropy levels relies on unbroken character sequences.

→ non-linear processes cannot be taken into account.

→ one expectation is that languages with non-linear morphology are outliers.
Possible effects of non-linear morphology

Some languages from families prone to non-linear morphology
Further questions

- What other limitations does the process proposed by Koplenig et al. (2017) have?
Further questions

- What other limitations does the process proposed by Koplenig et al. (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
Further questions

- What other limitations does the process proposed by Koplenig *et al.* (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
 - What happens if two languages with similar morphological properties encode different amounts of information grammatically?
Further questions

- What other limitations does the process proposed by Koplenig *et al.* (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
 - What happens if two languages with similar morphological properties encode different amounts of information grammatically?
 - How does lexical inventory size affect the process?
Further questions

- What other limitations does the process proposed by Koplenig et al. (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
 - What happens if two languages with similar morphological properties encode different amounts of information grammatically?
 - How does lexical inventory size affect the process?
- Can we find ways to quantify these different structural levels separately?
Further questions

- What other limitations does the process proposed by Koplenig et al. (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
 - What happens if two languages with similar morphological properties encode different amounts of information grammatically?
 - How does lexical inventory size affect the process?
- Can we find ways to quantify these different structural levels separately?
- To the extent that the process is reliable, which hypotheses can be tested with it?
Further questions

- What other limitations does the process proposed by Koplenig et al. (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
 - What happens if two languages with similar morphological properties encode different amounts of information grammatically?
 - How does lexical inventory size affect the process?
- Can we find ways to quantify these different structural levels separately?
- To the extent that the process is reliable, which hypotheses can be tested with it?
 - Correlations with creole vs. non-creole languages?
Further questions

- What other limitations does the process proposed by Koplenig *et al.* (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
 - What happens if two languages with similar morphological properties encode different amounts of information grammatically?
 - How does lexical inventory size affect the process?

- Can we find ways to quantify these different structural levels separately?

- To the extent that the process is reliable, which hypotheses can be tested with it?
 - Correlations with creole vs. non-creole languages?
 - Correlations with population size/ number of L2 learners?
Further questions

- What other limitations does the process proposed by Koplenig *et al.* (2017) have?
 - How does phonological complexity (inventory size, suprasegmentals, phonotactics) affect the results of this process?
 - What happens if two languages with similar morphological properties encode different amounts of information grammatically?
 - How does lexical inventory size affect the process?
- Can we find ways to quantify these different structural levels separately?
- To the extent that the process is reliable, which hypotheses can be tested with it?
 - Correlations with creole vs. non-creole languages?
 - Correlations with population size/ number of L2 learners?
 - Correlations with geographic features?
Population size and word structure
Yet another perspective

- There are probably a number of ways to significantly increase the reliability of the measures in Koplenig et al. (2017) and get even more meaningful results.
Yet another perspective

- There are probably a number of ways to significantly increase the reliability of the measures in Koplenig et al. (2017) and get even more meaningful results.
- But some limitations will remain, for example:
Yet another perspective

- There are probably a number of ways to significantly increase the reliability of the measures in Koplenig et al. (2017) and get even more meaningful results.
- But some limitations will remain, for example:
 - Bible translations are not very representative of a language, especially when it comes to syntax (cf. Maas, 2009)
Yet another perspective

- There are probably a number of ways to significantly increase the reliability of the measures in Koplenig *et al.* (2017) and get even more meaningful results.

- But some limitations will remain, for example:
 - Bible translations are not very representative of a language, especially when it comes to syntax (cf. Maas, 2009)
 - The measure relies much on orthographic word boundaries, which are not assigned consistently across languages.
Yet another perspective

- There are probably a number of ways to significantly increase the reliability of the measures in Koplenig et al. (2017) and get even more meaningful results.
- But some limitations will remain, for example:
 - Bible translations are not very representative of a language, especially when it comes to syntax (cf. Maas, 2009)
 - The measure relies much on orthographic word boundaries, which are not assigned consistently across languages.
- To complement studies based on parallel bible corpora, it would therefore be important to consider different data types as well.
The significance of data from language documentation

In particular, I would like to highlight the potential significance of data from language documentation.

- Language documentation data typically represents endangered languages.
The significance of data from language documentation

In particular, I would like to highlight the potential significance of data from language documentation.

- Language documentation data typically represents endangered languages.
- Typically, they are spoken in increasingly rare socio-linguistic settings that typologists believe to be conductive to special types of properties.
The significance of data from language documentation

In particular, I would like to highlight the potential significance of data from language documentation.

- Language documentation data typically represents endangered languages.
- Typically, they are spoken in increasingly rare socio-linguistic settings that typologists believe to be conductive to special types of properties.
- They are typically transcribed from natural discourse.
The significance of data from language documentation

In particular, I would like to highlight the potential significance of data from language documentation.

- Language documentation data typically represents endangered languages.
- Typically, they are spoken in increasingly rare socio-linguistic settings that typologists believe to be conductive to special types of properties.
- They are typically transcribed from natural discourse.
- In many cases, corpora from language documentation are small, but richly annotated.
Annotation layers in language documentation data

\ref .0009
\pt JI
\tx er kevene, vyanten kevene yat warsyosi
\mb er kevene, vyanten kevene ya -t warsyosi
\ge 1P.IN every man every 3P -DIST revere
\ps pron q n q agr -tam v

\ELANEnd 72.894
\ELANBegin 69.399
\ft we all, everyone used to respect him

^^I
Using annotations to measure complexity

- Despite their small size, richly annotated corpora from language documentation could still yield meaningful complexity measures for different layers:
Using annotations to measure complexity

- Despite their small size, richly annotated corpora from language documentation could still yield meaningful complexity measures for different layers:
 - Morphological complexity could be measured by counting
Using annotations to measure complexity

- Despite their small size, richly annotated corpora from language documentation could still yield meaningful complexity measures for different layers:
 - Morphological complexity could be measured by counting
 - the average/maximum number of morphemes per word (degree of synthesis)
Using annotations to measure complexity

- Despite their small size, richly annotated corpora from language documentation could still yield meaningful complexity measures for different layers:
 - Morphological complexity could be measured by counting
 - the average/maximum number of morphemes per word (degree of synthesis)
 - the average/maximum number of categories per morpheme/word (degree of fusion)
Using annotations to measure complexity

- Despite their small size, richly annotated corpora from language documentation could still yield meaningful complexity measures for different layers:
 - Morphological complexity could be measured by counting
 - the average/maximum number of morphemes per word (degree of synthesis)
 - the average/maximum number of categories per morpheme/word (degree of fusion)
 - Syntactic complexity could be measured by assessing entropy at the POS-level.
Sketching a way forward

To get a better handle on cross-linguistic variation in complexity, we need to:

- Compile a more complete survey of specific predictions from the typological (and other) literature.
Sketching a way forward

To get a better handle on cross-linguistic variation in complexity, we need to:

- Compile a more complete survey of specific predictions from the typological (and other) literature.
- Develop more fine-grained methods to explore complexity measures and their correlates in the parallel bible corpus.
Sketching a way forward

To get a better handle on cross-linguistic variation in complexity, we need to:

- Compile a more complete survey of specific predictions from the typological (and other) literature.
- Develop more fine-grained methods to explore complexity measures and their correlates in the parallel bible corpus.
- Explore other data types, in particular, richly annotated data from endangered languages, to consolidate and better understand measures and correlates.
References

References II

References IV

McWhorter, John H. 2001. The world’s simplest grammars are creole grammars. Linguistic Typology, 5, 125–166.

References VI

Trade-offs between levels

Many researchers continue to assume certain complexity trade-offs between different structural levels (cf. Joseph & Newmeyer, 2012), for example:

- explicitly encoded information vs. reliance on pragmatics (hot vs. cool languages) (Huang, 1984)
Trade-offs between levels

Many researchers continue to assume certain complexity trade-offs between different structural levels (cf. Joseph & Newmeyer, 2012), for example:

- explicitly encoded information vs. reliance on pragmatics (*hot* vs. *cool* languages) (Huang, 1984)
- Rich case structure vs. flexible word order (Siewierska, 1998)
Trade-offs between levels

Many researchers continue to assume certain complexity trade-offs between different structural levels (cf. Joseph & Newmeyer, 2012), for example:

- explicitly encoded information vs. reliance on pragmatics (*hot* vs. *cool* languages) (Huang, 1984)
- Rich case structure vs. flexible word order (Siewierska, 1998)
- complex syllable structure correlates with low tonal complexity (Matisoff, 1973)
The equal-complexity debate

Trade-offs between levels

Many researchers continue to assume certain complexity trade-offs between different structural levels (cf. Joseph & Newmeyer, 2012), for example:

- explicitly encoded information vs. reliance on pragmatics (*hot* vs. *cool* languages) (Huang, 1984)
- Rich case structure vs. flexible word order (Siewierska, 1998)
- complex syllable structure correlates with low tonal complexity (Matisoff, 1973)
- isolating morphology correlates with a rich inventory of processes at the lexicon-syntax interface (Bisang, 2009; Riddle, 2008);
Equal complexity pro and con

- Notions about *primitive* as opposed to *complex* languages were part of the racist and colonialist discourse until the 20th century (cf. Kilarski & Dziubalska-Kołaczyk, 2012; Kilarski, 2014).
The equal-complexity debate

Equal complexity pro and con

- Notions about *primitive* as opposed to *complex* languages were part of the racist and colonialist discourse until the 20th century (cf. Kilarski & Dziubalska-Kołaczyk, 2012; Kilarski, 2014).
- Linguistic text books from later decades uniformly asserted that there is no basis for such a distinction and that all languages are more or less equally complex.
Equal complexity pro and con

- Notions about *primitive* as opposed to *complex* languages were part of the racist and colonialist discourse until the 20th century (cf. Kilarski & Dziubalska-Kołaczyk, 2012; Kilarski, 2014).

- Linguistic text books from later decades uniformly asserted that there is no basis for such a distinction and that all languages are more or less equally complex.

- Since the 1980s, linguists increasingly challenge the equal-complexity claim.
Claims against the equal-complexity hypothesis

- Nichols (1992); Trudgill (2011): (certain types of) linguistic complexity tend to accumulate under specific socio-linguistic conditions.
Claim against the equal-complexity hypothesis

- Nichols (1992); Trudgill (2011): (certain types of) linguistic complexity tend to accumulate under specific socio-linguistic conditions.
- McWhorter (2001): Creole languages are radically simpler than non-creole languages.
Claims against the equal-complexity hypothesis

- Nichols (1992); Trudgill (2011): (certain types of) linguistic complexity tend to accumulate under specific socio-linguistic conditions.
- McWhorter (2001): Creole languages are radically simpler than non-creole languages.
Claims against the equal-complexity hypothesis

- Nichols (1992); Trudgill (2011): (certain types of) linguistic complexity tend to accumulate under specific socio-linguistic conditions.
- McWhorter (2001): Creole languages are radically simpler than non-creole languages.

Sampson (2009)

There cannot be many current topics of academic debate which have greater general human importance than this one [i.e. cross-linguistic variation in complexity].
Manipulations to target specific structural levels

- Juola (1998) replaces (type-wise) each non-blank character string by a randomly chosen number, then measures differences between compressed original and compressed degraded texts to estimate morphological complexity.
Manipulations to target specific structural levels

- Juola (1998) replaces (type-wise) each non-blank character string by a randomly chosen number, then measures differences between compressed original and compressed degraded texts to estimate morphological complexity.
- Ehret & Szmrecsanyi (2016) randomly delete 10% of characters to degrade morphological structure; syntactic structure is degraded by a random deletion of 10% of word tokens.